509 research outputs found

    Comparability of Functional MRI Response in Young and Old During Inhibition

    Get PDF
    When using fMRI to study age-related cognitive changes, it is important to establish the integrity of the hemodynamic response because, potentially, it can be affected by age and disease. However, there have been few attempts to document such integrity and no attempts using higher cognitive rather than perceptual or motor tasks. We used fMRI with 28 healthy young and older adults on an inhibitory control task. Although older and young adults differed in task performance and activation patterns, they had comparable hemodynamic responses. We conclude that activation during cognitive inhibition, which was predominantly increased in elders, was not due to vascular confounds or specific changes in hemodynamic coupling

    Neural signatures of cognitive flexibility and reward sensitivity following nicotinic receptor stimulation in dependent smokers : a randomized trial

    Get PDF
    IMPORTANCE Withdrawal from nicotine is an important contributor to smoking relapse. Understanding how reward-based decision making is affected by abstinence and by pharmacotherapies such as nicotine replacement therapy and varenicline tartrate may aid cessation treatment. OBJECTIVE To independently assess the effects of nicotine dependence and stimulation of the nicotinic acetylcholine receptor on the ability to interpret valence information (reward sensitivity) and subsequently alter behavior as reward contingencies change (cognitive flexibility) in a probabilistic reversal learning task. DESIGN, SETTING, AND PARTICIPANTS Nicotine-dependent smokers and nonsmokers completed a probabilistic reversal learning task during acquisition of functional magnetic resonance imaging (fMRI) in a 2-drug, double-blind placebo-controlled crossover design conducted from January 21, 2009, to September 29, 2011. Smokers were abstinent from cigarette smoking for 12 hours for all sessions. In a fully Latin square fashion, participants in both groups underwent MRI twice while receiving varenicline and twice while receiving a placebo pill, wearing either a nicotine or a placebo patch. Imaging analysis was performed from June 15, 2015, to August 10, 2016. MAIN OUTCOME AND MEASURES A well-established computational model captured effects of smoking status and administration of nicotine and varenicline on probabilistic reversal learning choice behavior. Neural effects of smoking status, nicotine, and varenicline were tested for on MRI contrasts that captured reward sensitivity and cognitive flexibility. RESULTS The study included 24 nicotine-dependent smokers (12 women and 12 men; mean [SD] age, 35.8 [9.9] years) and 20 nonsmokers (10 women and 10 men; mean [SD] age, 30.4 [7.2] years). Computational modeling indicated that abstinent smokers were biased toward response shifting and that their decisions were less sensitive to the available evidence, suggesting increased impulsivity during withdrawal. These behavioral impairments were mitigated with nicotine and varenicline. Similarly, decreased mesocorticolimbic activity associated with cognitive flexibility in abstinent smokers was restored to the level of nonsmokers following stimulation of nicotinic acetylcholine receptors (familywise error-corrected P<.05). Conversely, neural signatures of decreased reward sensitivity in smokers (vs nonsmokers; familywise error-corrected P<.05) in the dorsal striatum and anterior cingulate cortex were not mitigated by nicotine or varenicline. CONCLUSIONS AND RELEVANCE There was a double dissociation between the effects of chronic nicotine dependence on neural representations of reward sensitivity and acute effects of stimulation of nicotinic acetylcholine receptors on behavioral and neural signatures of cognitive flexibility in smokers. These chronic and acute pharmacologic effects were observed in overlapping mesocorticolimbic regions, suggesting that available pharmacotherapies may alleviate deficits in the same circuitry for certain mental computations but not for others

    Wideband TV white space transceiver design and implementation

    Get PDF
    For transceivers operating in television white space (TVWS), frequency agility and strict spectral mask fulfilments are vital. In the UK, TVWS covers a 320 MHz wide frequency band in the UHF range, and the aim of this paper is to present a wideband digital up- and down converter for this scenario. Sampling at radio frequency (RF), a two stage digital conversion is presented, which consists of a polyphase filter for implicit upsampling and decimation, and a filter bank-based multicarrier approach to resolve the 8MHz channels within the TVWS band. We demonstrate that the up- and down-conversion of 40 such channels is hardly more costly than that of a single channel. Appropriate filter design can satisfy the mandated spectral mask and control the reconstruction error. An FPGA implementation is discussed, capable of running the wideband transceiver on a single Virtex-7 device with sufficient word length to preserve the spectral mask requirements of the system

    Surviving the Anthropocene: the resilience of marine animals to climate change

    Get PDF
    If marine organisms are to persist through the Anthropocene, they will need to be resilient, but what is resilience, and can resilience of marine organisms build within a single lifetime or over generations? The aim of this review is to evaluate the resilience capacity of marine animals in a time of unprecedented global climate change. Resilience is the capacity of an ecosystem, society, or organism to recover from stress. Marine organisms can build resilience to climate change through phenotypic plasticity or adaptation. Phenotypic plasticity involves phenotypic changes in physiology, morphology, or behaviour which improve the response of an organism in a new environment without altering their genotype. Adaptation is an evolutionary longer process, occurring over many generations and involves the selection of tolerant genotypes which shift the average phenotype within a population towards the fitness peak. Research on resilience of marine organisms has concentrated on responses to specific species and single climate change stressors. It is unknown whether phenotypic plasticity and adaptation of marine organisms including molluscs, echinoderms, polychaetes, crustaceans, corals, and fish will be rapid enough for the pace of climate change

    Travelling for Umrah:destination attributes, destination image, and post-travel intentions

    Get PDF
    This paper examines the links between cosmopolitanism, self-identity, and a desire for social interaction perceived destination image and behavioural intentions. A model tested using a sample of 538 Iranian visitors to Mecca for the purpose of Umrah. The result from the structural model suggests that destination attributes influence perceived destination image. Further, such tourists are likely to revisit or recommend Islamic destinations if their experience matches their perceived image of the destination. This implies that, while the religious characteristics of the destination remain important, destination managers cannot disregard the tangential, non-religious attributes of a destination which are crucial in order to satisfy more conventional tourist desires. As such, this study suggests that those managing religious travel destinations should endeavour to foster a welcoming image, where experience, interaction and tolerance are at the forefront of the destination’s offering

    Synergistic Ca^(2+) Responses by Gα_i- and Gα_q-coupled G-protein-coupled Receptors Require a Single PLCβ Isoform That Is Sensitive to Both Gβ_γ and Gα_q

    Get PDF
    Cross-talk between Gα_i- and Gα_q-linked G-protein-coupled receptors yields synergistic Ca^(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca^(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cβ3 (PLCβ3), with a possible contribution of PLCβ2, whereas signaling through PLCβ4 interferes with synergy. We here show that synergy can be induced by the combination of Gβγ and Gαq activation of a single PLCβ isoform. Synergy was absent in macrophages lacking both PLCβ2 and PLCβ3, but it was fully reconstituted following transduction with PLCβ3 alone. Mechanisms of PLCβ-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCβ2. RNAi-mediated knockdown of endogenous PLCβs demonstrated that synergy in these cells was dependent on PLCβ3, but PLCβ1 and PLCβ4 did not contribute, and overexpression of either isoform inhibited Ca^(2+) synergy. When synergy was blocked by RNAi of endogenous PLCβ3, it could be reconstituted by expression of either human PLCβ3 or mouse PLCβ2. In contrast, it could not be reconstituted by human PLCβ3 with a mutation of the Y box, which disrupted activation by Gβγ, and it was only partially restored by human PLCβ3 with a mutation of the C terminus, which partly disrupted activation by Gα_q. Thus, both Gβγ and Gα_q contribute to activation of PLCβ3 in cells for Ca^(2+) synergy. We conclude that Ca^(2+) synergy between Gα_i-coupled and Gα_q-coupled receptors requires the direct action of both Gβγ and Gαq on PLCβ and is mediated primarily by PLCβ3, although PLCβ2 is also competent

    Grand unified theory constrained supersymmetry and neutrinoless double beta decay

    Get PDF
    We analyze the contributions to the neutrinoless double β\beta decay (0νββ0\nu\beta\beta-decay) coming from the Grand Unified Theory (GUT) constrained Minimal Supersymmetric Standard Model (MSSM) with trilinear R-parity breaking. We discuss the importance of two-nucleon and pion-exchange realizations of the quark-level 0νββ0\nu\beta\beta-decay transitions. In this context, the questions of reliability of the calculated relevant nuclear matrix elements within the Renormalized Quasiparticle Random Phase Approximation (pn-RQRPA) for several medium and heavy open-shell nuclei are addressed. The importance of gluino and neutralino contributions to 0νββ0\nu\beta\beta-decay is also analyzed. We review the present experiments and deduce limits on the trilinear R-parity breaking parameter λ111\lambda_{111}' from the non-observability of 0νββ0\nu\beta\beta-decay for different GUT constrained SUSY scenarios. In addition, a detailed study of limits on the MSSM parameter space coming from the BXsγB \to X_s \gamma processes by using the recent CLEO and OPAL results is performed. Some studies in respect to the future 0νββ0\nu\beta\beta-decay project GENIUS are also presented.Comment: 29 pages, 8 figure
    corecore